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ABSTRACT

The mechanical properties from the uniaxial compression Tasts
conducted in Phase I of the Mechanical Properties of Sea Ice program are
summarized. The tegts were gonductad at temperatures of -5°C amd ~20°C and at
scrain rates of 1077 and 107°/sec. The effects of temperature and strain rate
on each mechanical property are investigated. Each stress=straln curve 1is
presented and an energy based parameter is derived o characterize the
mechanical response of each curve. The effects of temperature and strain-rate
on this parameter are also investigated. The physical properties of each test
sample are listed, and their effect on the mechanical properties is briefly
discussed.

REY WORDS: ice mechanics, ridge, ice formed feature, mechanical property,
scatistical analysis, compressive strength, strain, linear,
regression analysis, prediction, testing, stress, load (force),
energy, temperature
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THE UNTAXIAL MECHANICAL RESPONSE OF MULTI-YEAR RIDGE ICE
BY

J. F. DORRIS AND J. 3. AUSTIN

INTRODUCTION

The Mechanical Properties of Sea Ice (MPSI) is a project, consisting

of several phases, to determine the mechanical properties of multi-year sea

ice. The project was developed and administered by Shell Development Company.

Participants sponsoring Phase [ of the project (MPSI-1) included Amoco Pro-

duction Company, Arco Oil and Gas Company, Chevron Oil Field Research Company,

Exxon Production Research Company, Gulf Research and Develcpment Company,

Minerals Management Service of the Department of Interior, Mitsui Engineering

and Shipbuilding Company, Sohic Petrcleum Company, and Texaco Incorporated.

The field program to collect ice samples and the experimental program for ice

testing were conducted by the U.S. Army Cold Regions Research and Engineering

Laboratory (CRREL) at Hanover, New Hampshire.

goals:
1.

2.

3.

The experimental program in MPSI-1 was designed to accomplish three

Measure the mechanical (i.e., 1-D compressive) properties of multi-
year ridge ice,

Determine whether there is any significant variation in the
mechanical properties within and between ridges, and

Develop the test techniques Lo be used in subsequent phases of the
DTOgranm.

The results presentaed hers summarize the approximately 200 uniaxial

compression tests conducted ia MPSI-i. These tests have aiready been

documentad by Cox et aiel in & DRAEL report and several excerpls hiave been
¥ E :

s 4 TR 2-4 n .
presented as tecanical papers Dy iadividual CRREL authors.” ~ The CRREL

report. describes the field program and experimental progra

presents

3

in derall and

=

rhe mechanical and physical properties of each test sample. The

3]
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surpose of this report 1s to present an analysis of the digitized tast data
which complements and expands upen CRREL's analyses by urilizing the entire
stress—strain history of each tesc.

The ice samples tested were extracted with a 4 1/4 in. diameter core
harrel in the spring of 1981 from ten multi~year pressure ridges located in
the Beaufort Sea, northwest of Reindeer Island. The ice samples were frans-
ported to the CRREL laboratories and prepared for testing. Sample preparation
included cutting each sample to length, machining the samples to test geo-
metry, and fitting the ends with synthane endcaps. The samples were then
tested under uniaxial test conditions. Mellor et al.S describe the details of
sample preparation and testing techniques.

i&e mechanical properties were measured by Cox et al. L at two
temperatures (i.e., -5°C, ~20°C) and two strain rates (i.e., 10 stec,
10”3/sec). These temperatures and strain rates wera chosen Lo bracket the
temperature and strain rate regimes of most interest o the engineer. To
characterize the ice, physical properties {e.g., brine volume, porosity, atc.)
of each sample were measured. To better define the physical properties of

& developed a method of calculating the air

each ice sample, Cox and Weeks
volume of the sample. This method permits the tocal porosity to be calculated
by knowing both the air volume and brine volume. A statistical summary of the
mechanical properties shows large scatter which is acttributed to the wide
variation of ice types found in multi-year ridges. Richter and Cox developed
a classification scheme for multi-year ridge ice which offers a means of
reducing the scatter by grouping tests according to ice structure. This
classificacion scheme was appiied to approximately 35 ctest samples in Phase I,
and a forthcoming report by Richter-Menge and Cox will contain additional
ecrystallographic analyses of MPSI-1 test samples.

¥eﬁksa investigates the statistical variation of strength within and
hetween ridges. Based on these statistics, he concludes tiat the
significant variation between cores at the same 3: a {i.2., within the same
ridge) nor is there any significanc differencas between ridgzes. However,
Weeks qualifies his conmclusions by pointing out that the ridgas used in this
studv represent old, well-healed ridges whose stféngth characraristics are
nrobably quite different than younger, less consolidarted ridges.

Supsequent phases of the program will emphasize other Lypes of rescs

1

to give a complete plcture of the mechanical response of multi-vea

i
Y
ot
[23
aQ
i1}
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{ca. To this end, test techniques were developed for uniaxial tension, con-
stant load compression, and conventional triaxial tests. The conventional

triaxial rests are conducted by applying the confining pressure in proporiien

to the axial stress. These test techniques are discussed by Mellor et al.’

The goal here is to describe the mechanical {(i.e., uniaxial compres-
sion) response as a whole by looking at the stress-strain curves. We begin by
listing the mechanical properties and describing the effects of temperature
and strain rate on rthose properties. The mechanical properties are then
integrated in such a way as to yield a quantity which characterizes a particu-
lar stress-strain curve. The variation in the mechanical response at each
test condition will be illustrated, and the ability to characterize each
strass-str§in curve will permit a discussion of changes in mechanical response
with changes in temperature and strain rate.

The stress—-strain curves presented here were produced by digicizing
the analog records of each test and firting splines to the digitized data. To
make the splines suitable for future constitutive modeling, certain assump~
cions were made about the initial conditions of the force-time record which
yielded different values faf the mechanical properties than those reported by
Cox et al.. These differences are small except in one case wnich will be
noted later. The assumptions made and procedures followed in processing the
data are described in Appendix 4. The spline for each force~time history is
printed in Appendix B and each stress-strain curve is presented according to
rest condition in Appendix C.

For completeness, the physical properties measured by Cox et ai.l
will be listed here. Although the large variations in mechanical properties
and mechanical response of multi-year ridge ice are related to the physical
sroperties of each test sample, discussion will be limited because of the

limiced amount of crystallographic data presently available. Attempts, now-

1
o
[
i
1)
Tt
b
]
{3
&
e}
iy
Y

ever, will be made to @stablish bounds and idencify trends for
herween mechanical and physical properties. The pending crystalilographic
analysis by Richter-Menge and CTox will permit a more detailad look into the

effeccs of physical properties.
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MECHANICAL PROPERTIES AND STATISTICAL SUMMARY

The uniaxial compression test samples in MPSI-1 were raken from ten
multi-year pressure ridges in the Beaufort Sea. At each ridge, two sitas were
selecred several meters apart. At a particular site, the samples were
axtracted from Cwo cores several centimeters apart. Each sample was labeled
with a Ridge ID, whose nomenclature identified the ridge, core {(and site}, and
depth of the sample. The designations Rl through R10 in the Ridge ID idencify
the ridge and the letters A-D identify the core. The letzers A, B designate
the cores at one site while the letters C, D designate the cores at the second
site. The depths in centimeters from the top of the ridge to the top and
bottom of the ice samples are denoted in the Ridge ID by the two numbers
separated by a slash. Thus a sample designated R1A-062/089 would indicate a
sample taken from Ridge 1, site 1, core A, and a depth of 62 centimeters to
the top and 89 centimeters to the bottom of the sample.

The uniaxial compression tests were conducted at Lwo temperatures
(i.e., T = -5°C, T = =20°C) and two strain rates (i1.e., £ = IG“S/sec, g =
10—3/seg). The four possible combinations of temperatures and strain rates
give four independent test conditions. For convenience in later discussions,
the tast conditions are assigned labels which are listed in Table 1. In the
following data summaries, all tests are grouped according to test condi-
rions. Fach test within a test condition group is identified by the Ridge ID
of the test sample.

Following the procedures discussed in Appendix 4, stress—strain
curves were generated for each test from which the mechanical propertieés were
calculated. The particular mechanical properties considered in the analysis
of the stress-strain curves are described in Table 2. This list includes the
mechanical properties commonly used by engineers to describe the mechanical
response of other materials as well as additional propertlies not usually
caiculaced. The additiomal properties include the energy dissipated at peak

strength, the total energy dissipated, “flow" energy, and “crushing' energy.

e 2

The flow and crushing energy terms are obtained from a decomposition of the

rotal energy and will be defined in the next section. For completeness, the

failure modes defined by Dorris’ are included but will act be digcussed hare.

-

In Table 2, the most important quantities used to describe the

» o ~ - ™
£ s T S0C L,e Line

¥ 5 >
M M T 124 A

quantity, L, is the inrtegral of the stress—strain curve and measuras the

mechanical response of multi-year ridge ice are ¢
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Table i

IDENTIFYING LABELS FOR EACH TEST CONDITION

T
. -58C -200C
€
1075/sec C55 €520
1073 /sec 35 €320
Table 2
DESCRIPTION OF MECHANICAL PROPERTIES
Mechanical
Properctcy Description ‘ Units
Oy Maximum Stress psi
Sy Strain at Maximum Stress 4
I Residual Stress (Stress at 4.3% Strain) psi
g Strain at End of Test A
Ep Initial Tangent ﬁodulgs psi x 10®
Eg Secant Modulus ES . psi x 108
. M ' '
GR/GM Stress Ratio
FM Failure Mode . -
I, Energy to Maximum Stress I, = j‘Hc(s}da (ia-1b£)/in°
o
.045 .
Is Energy to 4.5% Strain I, = f z{z)de (in=1bf)/in”
- o
. o - . 39 GR ;e ”‘”55' !
; 2L f e R R i LS L f et e 3T a4 i L
‘g FLOW LNErgY e / L ET 2 ) {10 DL iLn
I Crushing Energy (I = . = Ig (in=-1bf)/in°
IAiTls Energy Hatlio ———
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material's ability to store or dissipate energy. The spatial distribution of
Im in the stress—strain plane characterizes the material's response as either
hrittle or ductile. For multi-year ridge ice, the quantities ¢, &, E

Ly sl
i
and o, can approximate the spatial disctribution of Iy by defining the inicial
n

24
condition, peak value, and final value of the material response. In the

following, these five quantities will be referred to collectively as primary
properties.

In contrast Lo Oy, £y, and E?, the primary properties On and E? are
arbitrary since their value depends on the choice of strain at which they were
caleulated. FEach test was programmed to end at 5% strain, but the procedures
followed in processing the data resulted in tests with varying lengths
slightly less than 5% strain. In order to make meaningful comparisons between
the properties asscciated with the end of the test, 4.5% strain was arbi-
trarily chosen to be the strain at which I and ZT are calculated.

The mechanial properties are tabulated for each test according to
rhe four test conditions in Tables 3-6. Any test in these tables having
missing values indicates a test which did not reach 4.5% strain due to prema-
rure failure of the test sample. All available mechanical properties are used
in the following statistical summary of properties, but only those tests which
reached 4.5% strain will be used in describing the stress~strain response of
multi-year ridge ice.

A statistical summary of the mechanical properties for each rest
condition is provided in Tables 7-10. The tables list the number of samples
for each property along with the standard descriptive statistics of each
sample population. A measure of kurtosis and skewness is included to give an

impression of the shape of each distribution of the mechanical properties.

COMPARISON WITH CRREL'S RESULTS

The mean values of selected properties from Tables 7-10 are norma-
12 ; = : , - . T .
tized by the corresponding mean values reportad by Cox &t al. o provide 3
comparison of data sets. The ratios of mean values are ligted in Table 1I1 and
show good agreement between the data sets except for the initial tangent
modulus at the low strain rate.

The diserepancy in modulus values can be atzributec Lo different

dawm

measuring rtechniques. The inmstrumentation of an ice sample provided rwo

methods of measuring the axial displacementc. One method employed two DCDTs
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Table 16
SUMMARY OF MEAN VALUE FOR o (PSD)
T
~5egC -200C
é
20044 24972
1075 /sec , -
i i
61 l . 28
i T
42 | \o18
10‘3/590 !
177£57 255476
Table 17
SUMMARY OF MEAN VALUE FOR E,. (PSI « 10%)
T
~50(C -200C
504+ 368 B90+£ 8578
TO”Sf’sec N
87 r 37
89 i“ l 41
1073 /sec i
1.010+.312 1.136x.514
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Table 18

SUMMARY OF MEAN VALUE FOR I., (in-1bE)/in>

.
~-59C ~-200C
é
10.18+2.50 12.7023.21
10“5/53(:
61 29
42 | 18
10-3/sec 3 »Y
13.74+2.82 22.36+3.35
Table 19

LINEAR REGRESSION MODELS BASED ON TOTAL DISSIPATED ENERCY

Independent Dependent Test Linear

Variable Variable Conditioen Ccefficient Intercept g2
I Oy C55 37.31 -62.58 54
ZT Oy c520 22.11 120.71 LA
Im Iy C35 3G.70 433.61 .36
Ip Oy €320 31.54 699.45 48
Ip T €53 186,57 31.08 .38
Ip I €s20 21.61 -25.583 .93
Lo T €35 17.24 -59.46 .72
Iy g c320 18.20 -151.22 B4

%)
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alotting the maximum stress as a function of the other primary mechanical
properties (i.e., Eyr Igo E., and IT) in Figures 1-8., Figures l and 2 are of
interest since rhey coatain the loci of points for the peak value of the
stresg—strain curve and illustrate the large variation in the mechanical
response within a particular test condition and between test conditions.
Linear regression lines were calculated for each property pair at each test
condition in Figures 1-8. The property pair which showed the strongest
correlation {(i.e., the highest R% value) is Ty VS IT' The regression lines
are drawn for this pair in Figures 7 and 8 and the regression parameters are
listed in Table 19. Regression models for the other property pairs had
significantly lower R% values and for this reason they are not drawn aor
tabulated here.

Plots and linear regression models were also produced for all
pairwise combinations of the remaining primary mechanical properties. The

only property pair which showed a correlation is o, vs I.. Plots for this
4

R
pair together with the regression line for each test conditiocn are shown in

Figures 9 and l0. The regression parameters for this palr at each test
condition are lListed in Table 19. '

The positive correlations for Oy and 9 with I are not surprising

when one considers the general shape of the stress—strain curve for multi-year
ridge ice. The interesting observation is the similarity in slopes {except
possibly for o, vs I, at C520) at each test condition for the two models.

Fy

This suggests that the variations of o, with I, and ¢ with Iy are independent

M R
of temperature and strain rate. The temperature and strain rate effects on

the UH Vs E? and GR

regression lines in the plane.

vs I, models are accounted for by translations of the

LINEAR REGRESSTON MODELS BASED ON
ENERGY DISSIPATED AT PEAK STRENGTH

Qur ability to calculate ice loads would be greatly improved if a
failure criteria could be formulated o predict the maximum stress. Fallure

formulated bv appealing.to energy considerations.

or yield criteria are ofcen

We have already seen some correlation between the maximum stress {z 3} and the

total digsipated energy {ET} in Figurss 7 and 3. However, I. depends on the
Ea

post peak behavior of the stress-strain curve and, consequently, would not be

¥

useful in the prediction of Oyt Iinstead, an energy-based faillure criterio

i
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for Ty should be formulated in terms of energy dissipated up to peak strength

(Ip). We investigate this possibility by pleotting R E Ip in Figures 1l and
12. Regression lines are calculated for this property pair, and the regres-
sion parameters are listed in Table 20.

Comparison of the R? values in Table 20 shows a stronger correlation
for the high strain rate test conditions (i.e., C35 and C320). The weaker
correlations for the low strain rate test condition are probably a result of
the flatness of the low strain rate stress—-strain curve. There, the maximum
stress is difficult to determine causing greater error in the calculation of
Ip. Comparison of the 82 values for Iy in Table 20 with those in Table 19
shows a stronger correlation for the model based on IT' In contrast to
the Oy VS I; models, the Gy VS I, models show no similaricy in slopes.

Failure and yield criteria have traditionally been formulated in
stress space. However, some recent work in the theory of plasticity has
suggested that a more natural formulation for failure criteria would be in
strain space. This would be particularly true for a material such as ice
which exhibits a strain-softening behavior. A stress formulation for the
failure criterion of a strain-softening material would have to be double
valued whereas a strain formulation would remain single-valued. Thus we seek
correlations between the failure strain (i.e., strain at maximum stress), €y
and the energy dissipated at maximum stress. The By VS Ip ordered pairs for
each test condition are plotted in Figures 13 and l4. Regression lines are
calculated for each test condition, and the paramerers are listed in Table
20. The high R? values in Table 20 are to be expected since,

€

M
I, = f ole)de = (e, ) .

Yowever, we note the similarities in slopes for the Zwo pairs of test
conditions with conmstant strainm rate. Regression lines are recalculated-by
combining all data points for the two levels of constant strain rate. The
combined regression lines along with the data poines are shewn in Figures L3
and 16, and the regression parameters are listed in Table 20. The high g2
values for the combined data points indicate that a temperaturs independent

model for plausible. Again we anote a stronger correlation for the

£
<
73
i
G
ot
1]

high strain rate than the low strain rate.
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Table 20

LINEAR REGRESSION MODELS BASED ON ENERGY DISSIPATED AT MAXIMUM STRESS

Independent Dependent Test Linear

Variable Variable Condition Coefficient Intercept g2
Ip Ty C55 98.05 216.68 W13
In Ty €520 114.25 274.68 .28
Ip Oy €35 292.70 835,26 L40
Ip Iy €320 178.16 1075.01 .46
Ip €1 35 0.285 g.112 .73
Ip €y c320 0.187 0.128 .79
Ip 2y C35 0.086 0.071 .76
I Sy €320 0.077 3.063 .87
Lo ey C35, €520 0.250 0.117 .67
Ip €y €35, €320 0.074 0.077 .85

Table 21

SUMMARY OF MEAN VALUES FOR I, (in-1bf)/in’

T
-59C -200C
€
5 1.014=.488 1.038+.473
107 /sec R e b
67 § 37
1
69 | 41
1073/sec :
B36=.807 1.883+.770
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The effects of temperature and strain rate on Ip are again inves-
tigated by conducting t-tests for the two levels of constant temperature and
strain rate. The results are summarized in Table 21. This summary shows that
at all four test conditions except for C320, the mean wvalues of Ip are
similar. If the mean value for C320 was similar to the other mean values,
then we could hypothesize that the peak value for the stress-strain curve is
associated with a critical value of energy independent of temperature and
strain rate. This is a very attractive hypothesis and should not be abandoned
without a closer examination of why the mean value of €320 is different from
the others. One possibility for the difference is due to the fact that all
tests are included in each sample population of a given test condition when
calculating Ip. Selective editing of the tests according to ice type or
failure mode could significantly change the mean values in Table 21 and hence
change the conclusions of the pairwise t-tests. If editing of the data set
proves fruitless, then a failure criteria based on Ip over a more restrictive

temperature, strain rate regime should be investigated.

IDEALIZED STRESS~STRAIN RESPONSE

When discussing the mechanical response of a marerial, all mechani~
cal properties should be taken into account before a general impression of the
material's behavior can be made. The stress-strain curve for multi-year ridge
ice is a nonmonotonic curve which has a peak stress at approximately .l1-.4%
strain and decreases to a fairly constant value at strains greater than 4%
(see Mellar® for a detailed account of the stress-strain behavior of ice).
This type of curve can be characterized by the initial tangent modulus, the
peak value of stress and the constant stress at large strains. We will
attempt to define a single parameter which depends on these properties. This
parameter would then provide a useful basis for comparing different stress—
strain curves and discussing changes in the mechanical response with tempera-
cure and strain rate. -

Engineers commonly characterize the mechanical response of matarials

in qualitative terms as being 2ither brittle or ducfile. This terminology is

14

useful here, but the usual definicions of these terms must be modified hefor

being applied to multi-year ridge ice. A ductile material is usually de

=R

ine

Fry

as a materisgl that undergoes appreciable deformation before rupture {failure),

whereas a brittle material undergoes very little deformation prior to rupture.
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These definiticns are not very suitable for ice since an ice sample tested at
supposedly brittle conditions (e.g., 107¥/sec scrain rate) can still support
loads at large strains.

More suitable definitions arise by considering the idealized
response of a ductile and brittle material. A truly ductile material is often
modeled as a perfectly plastic material whose characteristic stress~strain
shape is a rectangle elongated along the strain axis. This model allows the
material to flow indefinitely under a constant yield stress. & truly brittle
material 1s often modeled as a linear elastic material whose stress—sfrain
shape is a sharp ramp. This model allows the material to attain high stresses
very rapidly and unloads instantaneously when the failure stress is reached.
These two models, illustrated in Figure 17, are consistent with the usual
definitions of ductile and brittle since plastic strains are usually quite
large when compared to elastic strains. However, it is the shape of these
models that should be kept in mind when classifying the response of multi-year
ridge ice. A flat stress-strain curve with a fairly constant post-peak behav-
ior is defined as a ductile response, and a sharp stress-strain curve with
rapid unloading after the peak stress is defined as a brittle response. The
notions of "flat" and "sharp" stress-strain curves will be quantified in the

following secticns.

ENERGY COMPONENTS

Perhaps the most appropriate mechanical property to describe
mechanical response is the total dissipated energy since its calculatioa takes
into account all aspects of the stress-strain curve, However, this guanticy
is not very useful in describing the shape of the stress~strain curve since no
information is provided about its distribution in the stress~strain plane.

The observation in a previous sectlion that the residual stress appears 5o bhe
rate independent suggests a useful decomposition of the total energv which
would permit a quantitative measure of the shape of the stress—strain curve.
If the residual stress is indeed independent of strain rate, then irs conCri-
bution to the calculation of the total energy would also be rate independent.

1

We define this rate independent contribulion as the

ry

oot
(]

w anergy. This quan=—
tity is estimated by calculating the area of the trapezoid bound by the

initial tangent modulus, the constant residual stress, the constant strain of

0.0453, and the strain axis. Thus, the flow energy 1s given by the eguation,
# ¥y g
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Linear Elastic (Brittie)

/Perfect!y Plastic (Ductile)

[rrriicms Wi i it e i ) Emma e

84/411/07

Fig. 17 - Schematic diagram of idealized material models.

m
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The difference between the total energy CET) and the flow energy (I?) would be
the rate dependent contribution and is defined as the crushing energy (IC).
In some cases, it 1s possible that cur estimation of the flow energy 1is
greater than the total energy which would result in a negative crushing
energy. 1n this event, the flow energy is set equal to the total energy, and
the crushing energy is set equal to zaro. Figure 18 is a schematic
representation of the decomposition of the total energy. Similar to the
summaries for the primary mechanical properties, the effects of temperature
and strain rate on the mean values of flow energy and c¢crushing energy are
summarized jn Tables 22 and 23. As expected, Table 22 shows the flow energy
to be independent of strain rate, and Table 23 shows the crushing energy to

increase with ilncreasing strain rate.

STRESS—-ENERGY PAIRS

Farlier, we saw that the two stress quantities, ¢, and o are

M R’
related to the total energy, and that relationship depends on temperature and

strain rate. In the previocus section, the total energy has been decomposed
inte rate dependent and rate independent parts via the quantities I and Ig.
With this decomposition, we can now create two conjugate stress-energy pairs
which provide correlaticns independent of strain rate.

The first conjugate pair is formed from the rate dependent stress

and energy gquantities. In Figures 19 and 20, we plot o, as a function of Ic

M
for the two levels of temperature. Figure 19 shows that there is a corrala-
tion between Ty and EC and that the correlation is independent of strain

rate. A linear regression line is calculated for all points in Figure 19 and

is found to be sfatisrically significant with a 3% value of 0.946. Figure 20

does not present such a strong argument fov a o, vs I, relationship indepen-

M
dent of scrain rate. The data points in this figure form two widely separated

slusters of points according ©o strain rate. In this situdation, we are guar-
anteed a good fit between the two clusters, but this deoes not necassarily mean
rhat the clusters are correlated. Despite this fact, a4 regression line is

calculated for the combined points in Figuve 20, and, as expected, the regras-
2

&
vaiug of 9.229.

icant with a R

sigon line is

n

£

ratistically signi
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Table 22

SUMMARY OF MEAN VALUES FOR I, (in-1b£)/in°

T
~50C ~20CC

3.92+1.97 11.12£3.16

1075 /sec , -
81 i i 29

| f

i
42 E ;18

1 0‘3/sec . -t
7.96+2.58 11.46+3.39

Table 23

SUMMARY OF MEAN VALUES FOR I, (in-1bf)/in’

"F’
-50C -2G0C
1.27+0.88 1.58£0.82
TO”slsec SRR R,
61 29
42 18
?O*E/sec |4 =7
85.78:1.50 10.86x2.13
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The parameters for the regression lines in Figures 19 and 20 are
summarized in Table 24, It is interesting to note that the intercepts for
each line correspond closely to the mean residual stress for that tempera-
rure. This suggests that at a given rtemperature, the ratio (aM - SR)KIC is
independent of strain rate. A comparison of the linear coefficients of the
regression lines in Table 24 shows that they are in close agreement. This
suggests that the only effect temperature has on the Oy VS I- relacionship is
to translate the regressienm line up or down by changing the temperature depen-—

dent wvalue of the intercept o Comparison of Figures 19 and 20 with

3
Figures 7 and 8 shows that the subtraction of the rate independent flow energy
from the total energy eliminates the translation of regression lines in
Figures 7 and 8. This results in a single relationship between I, and

Oy independent of strain rate.

The second comjugate pair is formed from the rate independent stress
and energy quantites. In Figures 21 and 22, we plot 5, a8 a function of Ip
for each temperature. The resulting, almost exact correlation between
g and IF in both figures is to be expected from our definition of the flow
energy. The important point to note is that the data points for each strain

rate have very similar distributions along the o, vs I line lending further

R
support for the rate independence of g and I_,. The strain rate dependent

F
rranslations for the regression lines seen in Figures 9 and 10 are again
eliminated from Figures 21 and 22 by subtracting the rate dependent crushing
energy from the total energy.

The equation defining the flow energy can be considered a regression
iine relating % and IF with a R% value of 1.0. The parameters for this line
are summarized in Table 24. This table serves the same purpose as Table 19 by
relating stress and energy quantities. However, in Table 19, Iy and o, are
funictions of the rotal energy whereas in Table 24, the dependent and indepen~
dent variables are rate dependent and rate indepeandent conjugate pairs of
stress and energy. The number of regression lines in Table 24 have been

reduced by a factor of two since the dependence on strain rate has been elimi=

e

nated. Comparison of the 8% values in both zables indicates that the

o re dependent and rate

decomposition of the independent variable, L., iato ra
do
independent components significantly reduces the scatter in the dependent




60
BRC 45-33

Tahle 24

LINEAR RECGRESSION MODELS BASED ON
CRUSHING ENERCY AND FLOW ENERGY

Dependent

Test

Linear

Independent
Variable Variable Conditions Coefficient Intercept g2
Ie Iy €55, C35 114.97 179.34 .95
Ia A €520, C320 102.03 260.63 .93
!
Ig g €55, C35 1/2 (59 —-§:> 0.0 1.0
T/a
R
R
Ip I €520, €320 1/2 (109 -5 0.0 1.0
\ T/
24
Table 25
SUMMARY OF MEAN VALUES FOR IchF
T
-50C -200C
é
.1382.089 A57£.093
1075/Sec —— s o e
61 29
42 i i 18
1073/sec JSSPUIRS W
.822+.400 1.088x.571
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A PARAMETER FOR CHARACTERIZING THE STRES5-STRAIN
RESPONSE OF MULTI-YEAR RIDGE ICE

The quantities I and I, can aow be combined te yield a parameter
which describes quantitatively the ductility or brittleness of a given stress~
strain curve. From Figure 18 we see that the "hump" of the stress-strain
curve is described by the crushing energy which measures the amount of energy
in excess of the flow energy. By calculating the ratio, ZC/IF, we can iden-
tify with each strass-strain curve a number which represents its shape. A
stress—strain curve with a low crushing energy relative to its flow energy
would have a low IC/IF value and would be classified as ductile, A curve with
a high crushing energy relative to its flow energy would have a high IC/IF
value and would be classified as brittle.

In practice it is not very practical to calculate the gquantity
ICfIF. A gquantity easier to calculate and serving the same purpose as IC/IF
would be desirable. From Figures 19 and 20 we see that the crushing energy is

proportional to (o, - GR) and by definition the flow energy is proporticnal

M
to o,. Thus, the ratio (GM - GR)/GR would be proportional to I./I; and would

prov?de another quantitative measure of ductilicy or britrleness. Figures 23
and 24 illustrate the relation between I./I, and (UM - SR)/&R for each
temparature.

By taking the limiting values of IC/IF and (GM - Ga}/ﬁg, we see that
in the limit these ratios represent the stress—-strain curves of the marerial
models shown in Figure 17. When I;/Ip and (g, - ag)/aR equals zero, we have

IC =0 and ¢, = g In this case the stress-strain curve would resemble a

M R’
perfectly plastic material. When I./Ip and (aM - GR}/GR become unbourded, we
have IF = 9% = (} and the stress~strain curve would resemble a brittle elastic
marerial.

., are summarized for sach fest

7]

The mean values of the ratio, IC/E
that the ratio increases with

condition in Table 25. This table shows
increasing strain rate and is independent of temperature. The temperature

independence is due to the proportional increases 1z the values of

et

Iy and 9% with the decrsass in temperature razsulting in a relative
By A

value of Icfig. Thus, 4 change in temperature causes a proportional change in

¥y constant

the shape of the stress—-straln curve wheveas a change in strain rafe will

¢

distors the shapse

o
e
7

.

he stress~strain curve., To illustrate rhe effects of
it

1y

temperature and strain rate on the mechanical response and the variability o
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rhe response within a given test condition, we choose the tests with maximum,
minimum, and mean values of ICfIF at aach test condition. The stregs=-sirain
curves for these tests are shown in Figures 25«28 according to test conditiocm.
The remaining stress—strain curves can be found in Appendix C according to
test conditions. The splines for each force-time history are listed in

Appendix B.

"AVERAGE'" STRESS~STRAIN CURVES

Finally, we would like to establish a method of defining a stress-
strain curve which in some sense represents the average response of multi-year
ice at each test condition. The most obvious method of doing this would be to
calculate pqint by point averages of all stress—strain curves within each test
condition and then plot those average values to obtain an average stress-
strain curve. This was done for each test condition, and the resulting curves
are shown in Figures 29 and 30 for T = -5°C and T = -20°C, respectively.

A much easier method of selecting an average curve would be to
compare the primary mechanical properties of each test with the cortespénding
mean values. The “error”™ associated with each property is its difference from
the mean. In order to compare the errors assoclated with the different
properties, each error should be normalized with respect to the mean value.

If the errors of each property are to be summed for each test, then each
normalized error should be sgquared. Thus, we can calculate a residual error

from the mean for each test from the equation,

5 =N 2
X, ™ %,
Ez = é Ml....:..m..i
3 =1 Xj

Here j denotes each of the five primary properties and the quantities

x. and x, denote the actual and mean wvalues, respectively, of the jth pro~

- -
serty. The residual errors for each rest are summarized in Tables 26-29. The
"average” stress-straln curve can now be chosen to be the curve with the

it

minimum or least square of the residual error. The "average” curves chosen by

the least sguarss method are shown in Figures 31 and 32.
A residual error for each curve obtained by pointwise averaging can

also be calculared. These errors are listed in Table 30 along with the least
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Table 30

COMPARISON OF RESIDUAL ERROR
FOR THE TWO AVERAGING TECHNIQUES

Test Condition Point by Point Least Square
Averaging Averaging
€55 L 100 .833
€520 L0640 037
c35 .0832 006
Cc320 .046 .030
Iable 31

STRUCTURAL CLASSIFICATION SCHEME FOR
MULTI-YEAR PRESSURE RIDGE ICE SAMPLES

Ice Type Code Structural Characteristics

Granular i ‘ Isotropic, equiaxed crystals

Celumnar 2 Elongated, columnar grains
ZA Columnar sea ice with c-axes

normal to growth direction.
Axes may not be aligned

2B Columnar sea 1ce having
random c—-axis orientation
Transition ice)

2C Columnar freshwater lce. May
be sither anisotroplic or
isorropic

Mixed 3 Combination of Types I and II
34 Largely Type II with granular
veins
3B Largely Type I with inclusicns o
Type [ or II ice (bracciated ice

AT s Y
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square error for each rest condition. Comparison of the errors for sach test
condition shows that the least square method of selecting an average curve
provides a better "average' since this method yields a curve which better
reflects the average primary mechanical properties.

Tables 26-29 contain the values of IC/I? for each test in additieon
to the residual errors. These tables suggest that the gquantity ICfIF provides
ancther possible method of choosing an average stress—-straln curve. Tests

with low residual errors have values of ECfIF very close to the mean value of

PHYSICAL PROPERTIES

Tt is well documented in the literature {(e.g., see Weeks and
Ackieyg) chat the physical properties of ice significantly affect its mechani-
cal response. The six physical properties most commonly recorded to charac—
rerize an ice sample are salinity, density, brine volume, air volume, total
porasity, and crystal structure. The crystal structure of an 1ce sample
depends greatly on the temperature and other environmental conditions at the
time of crystallization. However, once the structure is formed, it can exist
over a wide range of temperatures and can be considered independent 0f tem—
perature. The other five properties are governed by the phase diagrams for
solid seawater and consequently are functions of temperature. Frankenstein
and Garnerlo have derived an equation relating salinity and brine volume in
the temperature range from -2°C to -30°C. Over this same temperature range,
Cox and Weeks6 have derived equations to calculate the air volume Lf the
salinity and density are known. Once the air volume ig known, the total
porosity can be calculated as the sum of the air and hbrine volumes. Thus, we
see that of the five temperature dependent physical properties, only two are
independent. Any two of these properties along with the crystal structure are
sufficient fo describe the effects of physical properties on the mechanical
response of ice.

Civen the remperature, it 1§ easy Lo specify the temperaturzs depen~
dent physical properties from a few simple laboratory measurements and appli~—

cation of the equations refesrred Lo above, Specifying the crystal structure

vy

ication scheme has to be develeoped

[

ce a ciass

]

is not as scraightforward si:

which accounts for crystal shape (e.g., columnar, granular), c-axis orienta~

B o

. : : - - il 12
tion, and grain size. Previously, Cherepancv

and Michel have devised
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classification schemes for undeformed ice, but these are not suitable for
multi-year ridge ice. In addition to continucus regions of granular and
columnar ice types, multi-year ridge ice can contain fegioﬁs of discontinuous
structure such as snow filled voids, block interfaces, and healed cracks.
Richter and Cox’ have developed a classification scheme to encompass all
possible ice types in multi-year pressure ridges. Their scheme 1s summarized
in Table 31 and is applied to high, intermediate, and low strength samples
from rest conditions C55 and C35 in Tables 32 and 33, respectively.

The salinity, denmsity, brine velume, air volume, and porosicy are
lisred for each test in Tables 34-37 according to test conditioms. Since
these properties depend on temperature, the data from the two pairs of test
conditions with the same temperature can be combined into a single data
file. Descriptive statistics are calculated for each of the combined data
files ard are summarized in Tables 38 and 39 for -5°C and -20°C, respec~
tively. These twe tables also contain a similar statistical summary of the
properties of the samples tested at each strain rate. Comparison of the
combined statistics with the statistics for each strain rate indicates that,
on the average, the ice tested at different test conditions has the same
temperature dependent physical properties.

To demonstrate the effect of physical properties on the mechanical
properties, the maximum stress and initial tangent modulus are plotted as
funcrions of the total porosity for each test condition in Figures 33-40. Ino
each figure, a line is drawn to approximate an upper bound for the given
mechanical property and test conditien. These upper bounds show the maximum
stress and initial tangent modulus to decrease with increasing porosity as one
would expect. Since strength and the tangent modulus are known tO decrease
with increasing brine veolume, the test samples with a brine volume of less
than 5°/os are distinguished from the others to inmvestigate the possibility of
those samples being the upper bound for those properties. The upper bound 1is
decermined by lLow brine volume samples in Figures 34 and 36, put brine volume
alone does not determine the upper bound since low brine volume samples are
also associated with lower bound values of strength and Cangent moduius.
Considerarion of ice structure would probahi? explain the lower values of
strength and tangent modulus associated with the low brine volume samples.

To demonstrace the =ffects of crystal structurs, the data points

having a crystallographic classification are identified in Figures 33, 35, 37,
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Table 32

STRENGTH, STRUCTURE, AND PORCSITY OF SELECTED RIDGE ICE SAMPLES™
TESTED AT & = 107°/SEC AND T = -5°C
Ridge Strengt% Grain Size Porosity
ID (1bf/in”") Ice Type {mm} AR
High Strength
R1B-320/346 1490 2A~Aligned 35 < 16 25.3
0° Elongation
RSB-075/101 774 2A-Aligned 17T« B 72.3
5° Elongation
R1B-429/455 696 2A 15 = 10 23.7
~ 5° Elongation
RBA~432/458 657 2A-Aligned 30 =« 5 24,5
5° Elongation
R5A~165/191 619 24 15 < 3 16.9
0° Elongation
R74~342/3538 607 zZC 2 to 20 24.4
' 0° Elongation '
Intermediate Strength
R3B-363/387 394 3B < 1 15.3
R2A=~140/165 388 i 2 10.1
R5B-341/367 368 1 <1 56.1
R7A4~059/082 3él i < 1 69.5
R83-515/541 348 2B 20 % 5 23.8
Low Strength
R7B=241/267 229 3 5 77.8
R1a-226/252 214 2A 25 = 15 9.4
40° Elongation
R1IA-399/423 214 3 - 38.9
RIB-0G4/12] 171 38 < 3 143
R7A~263/286 68 Ja 35 154

4G° Elongation

]
t From Cox, et al.”




84
BRC 45-85

Table 33

STRENGTH, STRUCTURE, AND POROSITY OF SELECTED RIDGE ICE SAMPLES®

TESTED AT & = 1073/SEC AND T = =5°C

Ridge Strengi% Grain Size Porosity
ID (1pf/in“) Ice Type (mm) (®/so)

High Strength

R1A-300/326 1580 2Aa-Aligned 55 x 10 2G.3
0° Elongation

R7B-440/466 1540 2a-aligned 45 <« 10 32.0
5° Elongation

R8B-483/509 - 1440 2A-Aligned 50 « LS 25.6
15° Elongation

RBA-384/410 1297 2A 40 « 10 24,2
0% Elongation

R2A4~285/310 1270 2A 25 « 15 22.3
10° Elongation

R1A-175/201 1270 2A - 6.2
80° Elongation

R5B-141/167 1278 2A 45 x 23 21.1

0® Elongation

Intermediate Strength

R3B-331/357 971 3B <1 31.4

R3A-188/213 570 3 5 23.5

R3IA-401/427 925 3 <1 21.0

R1B=-216/241 915 .24 35 « 20 16.3
40° Elongation

R&B-299/325 910 3 2 to 10 56.2

R4B-420/466 910 34 35 « 10 53.0

Low Strength ’

R8B~300/326 587 3 - 15,1

R7B-175/201 557 2C 5 23.3
50° Elongation

R7B-072/098 487 3 - 53.4

R2A-110/135 408 1 , <L 86.9

R8BA-033/059 346 3 : ) - 75.2

% From Cox, et 4l.
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Table 34

PHYSICAL PROPERTIES

S$TRAIN RATE = {108~5)/SEC  TEMPERATURE = -5°C
Ridge Salinity  Density Brine Air Parosity Ice
in Test 35X Test § Valume Volume Type
(0/00) (1b/fc”)  (0/00) (0/00) (0/c0)
R1A-062/089 1.80 55.05 17.1 41.9 56.0
R1B-062/089 .30 54.54 2.8 43.4 51.3
R2A~140/1653 .10 56.77 1.0 9.1 10.1 i
R2B-094/121 0.44 49.35 3.7 139.2 143.0 38
R3a-106/131 .60 35.61 5.8 30.1 35.9
R3B-161/187 1.13 36.92 1i.1 8.1 19.2
R4A-312/338 1.60 53.92 14.9 61.2 76.1
R4B-3287/354 1.57 56.11 15.2 22.9 38.1
R5A-165/191 0.41 56.58 4.0 12.9 16.9 24
R58~075/101 1.80 54.25 16.9 55.5 72.3 24
R7A~059/085 1.70 54.37 15.9 53.6 69.5 1
R7B~126/152 0.40 51.90 3.6 94.6 98.2
R8A-133/159 1.00 55.95 9.7 24.8 34.3
R8B-162/189 0.82 36.36 8.0 17.4 25.4
R3C-095/122 0.54 54.87 5.1 42.9 48.0
R3D-159/186 0.26 49.39 2.2 138.2 140.5
R5C-039/066 1.27 53.10 il1.6 75.0 86.6
RSD-159/186 0.58 56.15 5.6 2G.7 26.3
R6C~166/193 0.45 50.74 3.9 114.8 118.8
RBC-048/075 0.56 54.28 5.2 53.4 58.6
R8D-236/263 0.50 54.74 4.7 45.1 49.8
R1A-226/252 1.26 57.00 12.4 7.0 19.4 4
R1A-399/425 2.40 56.62 23.4 15.4 38.9 3
R2A-205/230 0.38 35.32 3.6 35.0 38.6
R24-314/339 2,10 56.79 20.6 12.0 32.5
R2B~408/434 0.80 55.82 7.7 26.9 4.8
R2B-468/494 0.70 55.91 5.3 25.2 32.0
R3IA-220/245 1.61 37.06 15.8 6.5 22.3
R34-430/456 2.18 ° 56.21 21.1 22.2 43.3
R3B-363/389 0.89 56.99 8.7 6.5 15.3 3B
R&A-4626/452 1.30 55.79 12.5 28.2 40.8 :
R&R-391/417 2.27 36.42 22.1 18.7 40.8
R&4B-443/475 1.83 56.51 17.8 16.4 34.2
R54~397/423 0.30 S6.44 7.8 9.0 23.8
R54~442/463 1.09 56.73 10.7 il.4 22.1
R5A~504 /536 1.23 56,47 2.0 6.1 23.1
R5B=341/367 0.79 34.57 7.4 48.7 6.1 :
R58~398/423 1013 56.37 11.8 17.7 T RB.7
R74-263/289 3.303 50.22 26.3 127,68 153.3 14
R7A4-342/368 1.08% 56.57 10.2 E 24.4 2
R7IB-241/267 1.30 353.63 12.0 63.3 77.8 3
RBA-164/190 L.20 $6.45 11.7 5.4 28.1
RBA-432/458 L.80 57.06 i7.1 5.8 24,5 24
REB-333/359 1.50 57.04 14.3 6.7 2i.4
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Table 34 (cont'd)

Ridge Salinity  Density Brine Air Porosity ice
ID Test 35X Test S Volume Volume Type
(0/00) (1b/fc”)  (0/00) (0/00) (0/00)
R8B-515/541 1.80 57.10 17.7 6.1 23.3 2B
R3C~-296/323 i.62 55.91 15.8 26.5 42.2
R3C~-38G/407 1.28 55.33 12.2 36.1 48.3
R3D-219/246 1.28 53.43 11.38 69.3 8l.1
R3D-287/314 1.36 56.05 13.1 23.7 36.8
R5C-219/246 1.29 55.67 12.4 30.2 42.6
R5C~282/309 3.64 56.14 35.3 25.8 1.0
R5D~225/252 1.37 56.35 13.3 18.5 31.8
R5D-294/321 1.73 56.72 16.9 12,7 29.4
R6A-562/589 2.38 54.01 22.2 60.9 83.1
R6C-529/556 0.86 56.14 8.3 21.3 25.7
RBC~378/405 1.44 56.77 4.1 11.3 25.4
RBC-476/503 1.86 57.20 18.4 4.5 22.9
R8D~446/473 1.95 56.62 19.0 14.7 33.8
R8D~534/561 1.96 56.80 19.2 11.6 30.8
R9A-341/368 0.63 33.71 6.0 63.5 69.5
R9B-385/412 0.12 54.65 6.8 47.2 54.0
R9C-426/453 1.08 56.31 10.5 18.7 29.2
R9D-181/208 1.39 36.67 13.6 13.¢ 26.6
R10A-351/378 0.27 56.75 2.6 9.8 12.4
R10B-351/378 0.89 56.85 8.7 9.0 17.8
R10C-316/343 2.89 56.58 28.2 17.0 45.2
R10D-325/352 1.61 56.56 15.7 15.2 30.9
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Table 35

PHYSICAL PROPERTIES
STRAIN RATE = (lOE~5)/SEC TEMPERATURE = -20°C

Ridge Salinity  Density Brine Alr Porosity Ice
iD Test SX Test 5 Volume Volume Type
(0/00) (lb/ft™) (0/00) (0/00) (0/00)
R1C-065/092 0.27 55.94 0.9 5.9 26,8
R1D-071/098 0.61 56.61 2.0 14.6 16.6
R3C~128/155 0.74 56.13 2.4 23.1 25.6
R3D~129/156 0.14 49.65 0.4 135.4 135.8
R5C~097/124 0.28 53.38 0.9 70.6 71.4
RSD-121/148 0.53 55.91 1.7 26.7 28.5
R6A-461/488 1.G5 54,67 3.4 48.8 52.2
RBC-165/192 0.88 54,44 2.8 52.7 55.5
R8D-192/219 0.83 34.72 2.7 47.7 50.4
R9A-125/152 3.04 50.96 0.1 112.5 112.6
R9B-043/070 9.02 51.65 0.1 100.4 100.5
R10A~195/222 Q.53 56.20 1.7 21.7 23.4
R10D~157/184  0.69 56,76 2.3 12.1 14.4
R1C~210/236 1.10 55.40 3.5 36.1 39.7
RLC-240/266 1.55 55.88 5.1 28.2 33.3
R1D=-209/236 0.99 56.01 3.2 25.4 28.6
R1D=-315/342 2.21 56.53 7.3 17.56 24.9
R3C-329/359 1.69 55.94 5.5 27.4 32.9
RIC-411/438 1.36 56,35 4.5 16.4 20.9
R3D~250/277 1.59 55.83 5.2 28.8 34.0
R3D~318/345 1.45 56.60 4.8 15.6 20.4
R5C-250/277 1.55 56.55 5.1 16.6 21.7
R5C-328/355 3.88 57.00 12.9 11.1 24.0
R5D-255/282 1.69 56.22 5.5 2243 28.5
RSD~325/352 L.44 56.83 4.8 11.6 16.4
R6A-661/688 2.83 54.39 9.0 55.4 B84.4
R6C~589/616 1.63 56,52 5.4 12.0 17.4
RBC-444/471 1.48 56.56 4.9 16.4 21.3
R8C~508/535 2.61 56.84 8.7 12.6 21.3
R8D-477/504 1.95 57.10 6.5 I 14.0
R8D-565/592 1.45 56.81 4.3 12.0 6.8
R94-523/550 g.81 55.83 2.5 28.4 31.1
ROB-445/476 1.57 55.09 5.1 42.0 aj il
R9C=~395/422 1.49 535.77 3.5 29.7 33.3
R9D-317/344 1.1l 55.35 3.6 37.1 40.6
RI10A-326/347 1.2 56.92 4.1 3.9 o148
RIQB=-418/4643 0.2 56.62 G.2 i4.1 15.1
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Table 36
PHYSICAL PROPERTIES
STRAIN RATE = (10E-3)/SEC  TEMPERATURE = -5°C
Ridge Salinicty  Density Brine Air Porosity Ice
ID Test 8% Test 5 Volume Volume Type
(0/00) (lb/fc”)  (0/00) (0/00) (0/00)
R1A-175/201 0,70 56.81 6.9 9.4 16.2 2A
R1B-131/157 0.37 56.82 3.6 8.7 12.3
R2A-110/135 0.20 52.43 1.8 85.0 86.9 1
R2B~135/161 0.10 55.81 1.0 25.8 26.3
R3A-188/213 1.40 56.85 13.7 9.8 23.5 3
R3IB-130/155 1.13 56.28 11.0 19.3 30.3
R4A-283/309 1.30 53.58 12.0 66.7 78.7
R4B-299/325 1.30 54.89 12.3 43.9 56,2 3
R5A-135/161 0.20 56.10 1.9 20.9 22.9
RSB=-141/167 0.20 56.20 1.9 19.2 21.1 24
R74~005/031 0.02 52.92 0.2 76.2 76 .4
R7B-072/098 G.48 54.53 4.5 48.9 53.4 3
R8A-033/059 0.30 53,16 2.8 72.5 75.2 34
R8B~011/037 0.10 52.48 0.9 84.0 84.9
R2C-049/0G76 0.17 49.93 1.5 130.6 132.1
R2D-134/161 0.37 52.64 3.4 81.5 84.8
R4C-244/271 2.58 56.13 25.0 24.3 49.2
R4C-309/336 0.83 55.43 3.4 33.7 42.1
R4D-228/255 2.51 55.90 24.2 28.1 52.3
R7C-007/034 G.10 54,27 0.9 52.9 53.8
R6A~398/425 0.88 52.18 7.9 90.4 98.3
R6A~504/531 0.81 53.47 7.5 67.9 75.3
R7D-088/114 0.64 55.33 6.1 35.1 41.2
RYC-080/107 0.46 54.67 4.3 46.1 50.4
R9D-082/109 0.41 53,72 3.8 62.9 66.7
21A-306/326 1.00 56.77 9.8 10.5 20.3 24
R1B-216/241 1.20 57.14 11.8 4.4 16.3 24
R1B=243/268 1.56 57.14 15.4 5.0 20.4
R2A-285/310 6.70 56.46 5.8 15.5 22. 2A
R2A-383/408 2.00 56.81 19.56 11.5 3.1
R2B=351/377 2.46 56.37 23.9 19.8 43,8
RIB~438/464 2.70 56,48 26.3 18.3 44,4
R3A-401/427 1.45 57.03 14.3 6.3 21.0 3
R3IB~239/245 2.00 57.13 19,7 5.9 25.5 i
RAB~331/357 2.00 56,79 19.6 11.8 31,4 38
R4A~398/423 1.30 56,03 12.6 23.2 36.5
R48~358/384 1.36 56.00 18.9 - 25.5 44,4
RA4B-420/446 3.30 36.39 2.2 20.8 53,0 34
254-5673/499 0.51 85,75 8.8 28.3 37.1
RSE=287/313 4.00 56.96 19,4 12.1 51.4
R58~370/396 1.26 35,99 12.0 40.4 52.3
R7A-232/258 3.40 49.76 29.2 136.1 165.3
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Ridge Salinity  Density Brine Air Porosity Ice
2 Test 54 Test 8 Yolume Volume Type
(0/60) (lb/fe”) (0/00) (0/00) (g/c0)
R74-295/321 0.95 54.09 8.9 57.3 66.1
R7B-175/201 0.13 56.03 1.3 22.0 23.3 2C
R7B-440/466 2.48 57.08 24,4 7.6 32.0 ZA
R8A-305/331 1.50 56.70 4.7 12.6 27.2
R8A-384/410 1.70 57.01 16.7 7.3 24,2 ZA
R3B-300/326 0.30 56.61 2.9 12.2 15.1 3
R8B-483/509 2,10 57.0 20.7 4.9 5.6 24
R2C~196/223 1.04 35.35 3.9 35.4 45.3
R2C-278/305 2.33 34.66 22.0 43,5 71.5
R2D=-220/247 .37 54,85 3.5 46.7 50.3
R2D-334/371 1.90 54.58 17.9 50.3 68.1
R4C-414/441 3.03 56.76 29.7 14.1 43.7
R4C-512/539 1.03 55.85 9.9 26.6 36.6
R4D-495/522 2.92 57.16 28.8 6.9 35.7
REC-476/503 0.93 S54.44 8.7 51.2 39.9
R7C-143/170 0.77 56.27 7.5 18.9 26.4
R7C-541/568 1.15 56.75 11.3 11,2 22.5
R7D=-223/250 2.04 53.49 19.5 34.5 54.0
R7D-312/339 i.12 54,82 10.6 44,7 55.3
ROA-44L5/482 1.65 54,01 9.8 58.8 68.6
R9B~3293/356 0.78 535.00 7.4 41.0 48.4
R9C-332/359 0.83 54.98 7.9 41.5 49.3
R9D-249/276 0.96 53.81 8.9 62.2 71.1
R10A-269/296 0.8l 56.39 7.9 16.9 24.8
R10B-274/301 1.09 56.44 10.6 16.5 27.1
R10C-445/472 1.99 56.71 19.5 13.2 32.7
R10D-231/258 1.03 56.51 i6.1 13.4 23.5
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Table 37

PHYSICAL PROPERTIES
§TRAIN RATE = {10E-3)/SEC  TEMPERATURE = -20°C

Ridge Salinity Density Brine Alr Parosity Ice
ID Test SX Test 8§ Volume Volume Type
(0/00) (lb/ft”) (0/00) (0/00) (0/00)
R1C-127/154 .31 56.08 1.0 22.8 23.8
RiD-153/178 1.00 56.20 3.3 22.1 25.4
R2C-129/156 0.63 56.62 2.0 5G.5 52.5
R2D-095/122 0.20 53.22 0.6 73.3 73.9
R4D~198/225 2.31 54.72 7.4 49,2 56.5
R6A-531/558 1.22 54.37 3.9 56.2 58.1
R6C-134/161 0.29 52.48 0.9 86.2 87.1
R7C-092/119 .82 55.89 2.7 27.4 30.1
R7D-036/063 0.19 55.186 0.6 39.5 43,1
R9A-071/098 0.04 50.93 0.1 113.0 113.1
R9B-076/103 0.03 50.68 0.1 117.4 1i7.4
R9C-049/076 0.38 54.81 1.2 45.8 47.0
R9D~150/177 1.22 55.68 4.0 3l.4 35.4
R10A-238/265 0.81 56.58 2.7 15.4 18.0
R10B-084/111 Q.61 56.33 2.0 19.5 21.5
R1C-349/375 3.42 56.71 11.3 i5.5% 27.0
R1C-384/410 1.94 ‘ 54.65 6.2 50.0 56.2
R1D-179/206 1.03 56.63 3.4 14.7 18.1
R1D~285/312 2.48 57.29 8.3 4.6 12.9
R2C-226/253 .89 54,80 2.8 46.4 49.3
R2C=-310/337 2.63 55.15 8.5 42.0 50.5
R2D~265/292 3.01 55.25 9.7 £0.6 50.3
R2D-406/433 1.61 55.13 5.2 41.4 46,5
R4C-482/509 1.28 55.92 4.2 27.3 31.5
R&4C~543/570 1.87 56.16 6.1 23.7 29.8
R4D-382/409 1.13 36.45 3.8 18.0 21.8
R4D-414/44] 0.90 55.25 2.9 33.6 41.5
R&D~525/552 0.88 56.19 2.9 22.2 25.1
REC~559/586 1.70 55.92 5.6 27.7 33.3
R7C-457/484 1.32 57.04 4,4 7.9 i2.3
R7C-572/599 1.33 36.73 4.4 13.3 i7.7
R7D~254/281 1.21 55.62 3.9 32.5 36,4
R7D-546/573 1.09 56.72 3.6 13.2 6.8
R9A-424/451 G.68 34.00 2.1 60.1 2.3
R9B-417/444 0.62 34.37 2.0 53.8 55.46
RYC-507/534 1.36 56.77 5.2 3.3 9.3
R9D-348/375 1.14 55.39 3.7 6.4 40.1
R10a-407/434 0.22 56.63 .7 13.C 13.8
RINB-449/476 (.36 56.70 1.2 12,8 14.0
RL0C-306/3533 3.65 $7.02 i2.2 5.5 22.7
R10D=-508/335 2.35 57.00 7.8 3.5 17.4
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and 39. In these figures, the columnar ice types (i.e., 2A, 2B, and 2¢H
appear to be more closely clustered than the granular or mixzed ice Cypes .
{i.e., 1, 3, 3&, and 3B). This is due to the generally low porosity of che
columnar samples and the wide range of porosities found in the granular and
mizxed ice types. The columnar samples, however, do show much scatter in the
maximum stress since crystal orientation plays an important role in these
samples. The columnar ice types loaded in the hard fail dirvection (i.e.,
small angle between the lcad direction and axis of elongation) generally
determine the upper bound on strengths, while the granular, mixed, and
columnar loaded in the soft fail direction ice types fall into the inter-

mediate and low strength ranges,

SUMMARY

Current methods of calculating ice loads depend on a knowledge of
the mechanical properties of the ice feature being considered. Prior to the
completion of MPSI-1 limited data were available describing the uniaxial
‘compreésive response of multi-year ridge ice. The results pregented here
summarize the mechanical properties of approximately 220 uniaxial compression
rests conducted at two temperatures and CWoO strain rates in MPSI-l. The
effects of temperatures and strain rate on the mechanical properties are
investigated by conducting pairwise tL-tests on the mean values for the two
levels of constant temperature and constant strain rate.

As expected, the t-tests show that the maximum stress and the total
dissipated energy increase with increasing strain rate and decreasing. tempera-
rure. The tangent modulus increases with increasing sctrain rate but is inde-
pendent of temperature. The residual stress is independent of strain rate but
{ncrsases with decreasing temperature. The strain at maximum SCress lncreases
with decreasing strain rate, but the t-tests on temperature effects are incon~
elusive.

An energy based failure criterion was invescigated by calculating
the snergy dissipated to peak strength. The resulrs from the t-fests con™
ducted on “his energy quantity show that at all test condirions except for one
{i.e., C320), the mean value of the anergy dissipated at peak strength is the
same. This observaction offers some promise for an energy nased failurs
criterion, but further investigations nead o be made ©o uynderstand why the

energy dissipated at €320 is different. Even if rhese investigations prove
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fruitless, an energy based failure criterion could possibly be hypothesized on
4 restricted temperature strain-rate regime where the mean values of the
energy dissipated to peak strength are rthe sama.

Improved techniques for calculating ice loads will depend on more
than a knowledge of a single mechanical property such as the compressive
strength. Numerical modeling techniques, such as the finite element method
for example, can take advantage of the antire stress—strain curve to describe
rhe material behavior. Given the large variations observed in the mechanical
properties, a means of classifying the stress—strain curves was sought Lo
allow a comparison of different curves at a particular test condition and to

investigate the effects of temperature and strain rate on the stress-strain

response,

x

The total energy dissipated (I.) by an ice sample seems to be a
logical choice as a parameter for discussing the stress-strain respomse since
all important mechanical properties contribute to its calculation, Material
response is typically described in qualitative terms as being either brittle
or ductile. However, this familiar terminology is of no use in connection
with I; unless its spatial distribution in the'saress—st:ain plane is somehow
brought into play.

A measure of the spatial distribution of Iy can be derived by
decomposing Ip into a rate independent and a rate dependent part. The rate
independent component of the total energy dissipated is defined as the flow
energy (Ip) and the rate dependent component is defined as the crushing energy
(Ig). The ratio, I./Iy, can now be used to provide a quantitative measure of
ductility or brittleness. An ice sample with a low ICKEF value has a flat
stress—~strain curve and hence represents a ductile response. On the other
hand, a high ECEIF value indicates a sharp stress-strain curve. Rate
independent correlations between sCLrass and energy components can be obtained
by pairing the flow energy with the residual stress (GR} and the crushing

energy with the maximum stress {GM)- From chese correlations, we find the

quantity

g {q
H
!

is proportional to I /Ip and hence provides another measure of brittleness or

ductility.
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Dairwise t~tests were conducted for the ratio chﬁg for the two
levels of constant temperature and strain rate. Results show that the mean
valueg of ICEE? does not change with temperature but lncresases with ilngreasing
strain rate. Thus, changes in temperature cause a sroporticnal change in the
shape of the stress—strain curve. This is due to approximately proportional
inereases in maximum stress and residual stress with decreasing temperature.
Changes in strain rate cause a distortion in the shape of the stress-strain
curve as one would expect.

A comparison of the IC/IF value within a particular test condition
shows large variation of the mechanical response. If the entire stress—strain
response i3 to be incorporated into an improved design methodology, then a
method needs to be chosen to somehow suitably average the wide range of
responses observed at a particular test condition. Two methods were inves=-
tigated. The first method 1s simply a point by point averaging of each
curve. The second method is to minimize the least square "arror" from the
mean of all important mechanical properties. Of the two mecthods investigated,
the second is the easier method. to apply and provides a means of choesing a
real stress—strain curve which is more faithful to the observed average
mechanical properties.

The effects of the physical properties on the mechanical properties
were briefly investigated. Similar to other ice types, the maximum stress and
tangent modulus of multi-year ridge ice decrease with increasing porosity.

The possibility that the samples with low brine volumes form an upper bound on
the strength vs porosity and tangent modulus vs porosity plots was also
investigated but no such upper bound was found. The limited amount of
crystallographic information showed that columnar samples had smaller varia-
rions in porosity than other ice types, but stiil had large variatioms in
strengths due to variations in the orientations of the axis of elongation of
the crystal with respect to loading direction. The larger variations in
mechanical properties of the mixed and granular ice types are due primarily to

large variations in porosity.

RECOMMENDATIONS FOR FUTURE WORK

slchough rthe effaccs of temperature and strain rate on the uniaxial

&3

ridge ice have been investigated, our underscanding of

sponse of multi-ves

&

v

()
o
(&
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saterial's behavior is by no means complete. In lce-structure interacrian
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sroblems, the ice will be subjected to three dimensional states of strass.
Consequently, a knowledge of the effects of confining pressure on the
nechanical response of multi-year ridge ice is. needed. Fhase 11 of the
program (MPSI-2) includes approximately 60 conventional triaxial tests which
will provide information on the pressure dependence of the mechanical
response.

It is expected that a simple linear interpolation of the mechanical
properties between the two MPSI-1 test temperatures {(i.e., =3°C and -20°C)
will be adequate to define the temperature dependence of the properties over
that temperature range. However, there are situations such as summer floe
impacts and the local contact between a ridge keel and conical structure where
the temperature of the ice would be warmer than ~5%°C. At warm temperatures,
the meahaniéal wehavior of ice becomes highly nonlinear, and extrapolation of
rhe MPSI-1 temperature data would probably over-predict ice strengths near the
melting point. Clearly, warm temperature strength data are needed. A rest
program independent of the MPSI program has been initiated to obtain these
data.

Wwith the completion of the program to obtain warm temperature
strength data, we will have a comprehensive view of the small scale mechanical
response of multi-year ridge ice. Emphasis should then be shifted from the
laboratory to the field. In particular, investigations need to be made on the
internal structure of multi-year ridges. The small scale data show large
variations in the mechanical properties which are attributed to the wide
variety of ice types found in multi-year ridges. Very little is known about
the gpatial distribution of these ice types within a ridge. Structural trends
observed in a ridge could play an important role in the calculation of ice
‘oads. It was observed, for example, that the keel region of the continuous
core sampled in MPSI~l contained predominantly vertically oriented columnar
ica. If this is in general true for all keels, then the design methodology

and geometry could be modified to take advantage of this feature.
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